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0.1 Introduction

0.1.1 Topics of the Course
1. Statistical Models: (P : 6 € ©), a parametrized model. We have n data points

(a)

iid
Xi,.... X, % p,

Sufficiency and Exponential Family.

i. Factorization

ii. Minimal Sufficiency: is it possible to keep information while compressing
the data.

iii. Ancillary Statistic
iv. Completeness

v. Rao-Blackwell Theorem: a consequence of sufficiency. If you use an esti-
mator not based on a sufficient statistic, it can always be improved.

2. Decision Theory: Compare the performance of different estimators.

(a)

e~ N -~
¢} o

Loss function: [ (é, 0), the distance between the estimated parameter and the
true parameter. It is itself a random variable.

Risk: EI(0,0)

Bayes and Minimax Optimality

Admissibility

James-Stein Estimator: considered the most interesting topic in this course.
Application in optimal adaptive non-parametric estimators.

Neyman-Pearson Lemma

Minimax Lower Bound: used to argue that estimatotion error is at least some-
thing: Le Cam two-point method. Estimation is always going to be harder
than testing - a lower bound for the testing problem implies a lower bound for
the estimation problem.

3. Estimation under Constraints

(a)
(b)

Unbiasedness assumption: UMVUE, Lehmann-Scheffe

Invariance: location family, Pitman Estimator

4. Likelihood and Asymptotics

a)
b)
c)
d)

N~ N~

—~
€]
~—

Consistency of MLE
Fisher info and score.
LAN and DQM

Cramer Rao Lower bound: (People use this to justify asymptotic optimality
of MLE but it’s not true?)

Hodges estimator
Convolution Theorem and Local Asymptotic Minimaxity

Bernstein-von Mises theorem
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0.1.2 Recommended Textbooks

1. E. Lehmann and G. Casella, Theory of Point Estimation: Covers section 1, 2 and
part of section 3.

2. E. Lehmann and J. Romano, Testing Statistical Hypotheses: Will only use some
pages.

3. 1. Johnstone, Gaussian Sequence Model: Very important and relevant to current
research.

4. A. van der Vaart Asymptotic Statistics: the book the instructor uses everyday in
his research - should read very carefully every page of it.

0.2 Statistical Model/Experiment

Statistical Model/Experiment

A statistical model/experiment is a collection of probability distributions
Py:0e€0©
Also we have data/observations
X.,.... X, "% p,
We usually assume i.i.d. observations.

Statistic

A statistic or estimator is a function of data

T:T(Xl,...,Xn)

We should think of statistic as a summary of the data, or a way to compress the
data.

A natural requirement is that we don’t want to throw away some of the data, e.g. the
statistic only uses the first observation. The idea of sufficiency gives a rigorous way to
characterize no-information-loss.

Sufficient Statistic

T is sufficient iff and the conditional distribution of X|7" does not depend on .
e Why is this a good definition and how do we interpret it?

e Image that we have two statisticians Alice and Bob. We give Alice the
raw data Xi,..., X, but we give Bob a summary/function of the data
T = T(Xy,...,X,). Now who has more information? Well, the informa-
tion Alice has is not less than the information Bob has. However, if T is
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sufficient, then Bob has no less information.

e Bob’s strategy: sample Xi,..., X, from the conditional distribution X |T.
The marginal joint distribution of the new data (Xi,...,X,,) is the same as
(X1,...,X5).

Gaussian Example

n

id.d. - 1
X1, .., X, KNGO, TX)=X=-Y X,
n
=1
is sufficient.
X, X
: = : |-
. X ~N 5 7In__1n1n)
= n
Xn X
11 _1
1 1t
I, —=1,1 = " "
n
11— 1L

Note that to see E[X;|X] = X, write

EX|X)=X X-=

S|

i=1

By symmetry, the conditional expectation of X; given X are all the same, and their
average is equal to X, so they are all equal to X.

The covariance matrix is related to Schur formula.

Bob can sample

X 1
~ N 7In - _lnlz;)
- - n
X X
X1
which has the same distribution as : . We can check manually this by seeing
Xn

that 5 o B
EX; =E[E[X;|X]]=EX =46

For the second moment, note that it’s equal to mean squared plus variance:

; F 25 1 - 11
E[X,] = E[E[X,[X]| B[l -~ + X" =1- —+ - +6° =1+6°

Var(X) =EX," — (EX,)? =1+ 6> — 62 =1
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We next compute the cross moment Cov(X,Y) = E[XY] - E[X]|E[Y]:

Therefore, o
Cov(X, Xp)=0>—-60>=0

Therefore, we see that X follows the same distribution as X. (Mean and Covariance
are all we need to characterize Gaussian.)

J

Bernoulli Example

Xi,..., X, "% Bernoulli(0), T(X)=Y_ X;

is sufficient. We consider the following quantity.

P(X =2,T=1)
P(T =t)

P X =z|T=t)=

P(X:l‘,TIt)Z{O S X4 !
= 1Z?=1Xi=tP(X:x)

= 12Xi=t H gxl(]. - 9)1_$i
i=1

= 1y x, 041 — )"

Therefore,
P(X =2|T =t) =1y x,=t 7y

(?)
which does not depend on 6.

J

Arbitrary Distribution Example

Consider observations from an arbitrary probability distribution and the order
statistic

X17 7Xn 1}\:1 P97 T = (X(l)a"'JX(n))a

X1y < Xg < < Xy

Well this is a function of the data. Some information is lost since if we are given
the order statistic, we cannot get back to the original data. The question is: even
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if we lose information, do we lose information relevant to 87 The answer is no and
we can show that the order statistic is always sufficient.
The verification is very easy. All we need to do is to consider

X1, X0l X1), X2, -, X

Given the order statistic, (Xj,...,X,,) has n! possibilities since they must be a
permutation of the order statistic and by symmetry, each permutation has equal
probability. Therefore, Xi,..., X,|X(1), X(9),..., X(») is a uniform distribution
over all the n! permutations. If Bob is given the order statistic, he can just shuffle
the order statistic and get X that has the same distribution as the raw data.

If the data are not independently sampled, the order statistic is no longer sufficient.

J

Uniform Example

Consider observations from a uniform distribution on the interval (0, 6):

d

X1,.. ., Xy "X Uniform(0,0), T(X,...,X,) max X; = X(n)

1<i<n

is actually sufficient.
We can argue that by consider the order statistic, and note that

Xy, ,X(n_1)|X(n) =17

is an order statistic from n — 1 i.i.d. samples from Uniform(0,1t).
Bob can sample the remaining n — 1 data from Uniform distribution on (0, ¢).

J

Discussion question: Should we always use sufficient statistic and throw away the
data?

e Infomration-Theoretic perspective: Yes

e Computation perspective: No, you need to sampling artificial data from X |7 and
sampling can be NP hard. (Montanari 2015, Bresler, Gramamik and Shah 2014)

0.3 Review: Sufficiency

Recall the definition of sufficient statistics: Suppose we have a distribution parametrized
by 6:

(P, 0 €0), Xi,...,X, ~" P,

T =T(Xy,...,X,) is called suffient iff X|T does not dependent on 6.

An Alternative Bayesian Definition of Sufficiency

T is sufficient if and only if
0T —X

forms a Markov chain, i.e.
0L X|T
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A useless remark: Note that § — X — T is always a Markov chain.

The following theorem is very easy to use in practice.

Factorization Theorem

Suppose (P : 6 € ©) is continuous or discrete (has pdf or pmf), then 7 is sufficient
if and only if
p(X[0) = go(T'(X))h(X)

for some function gy and h.

o If given T, the value of gy is deterministic.

Proof. We present the proof for the discrete case. Assume that the factorization
condition holds, i.e.
P(X16) = go(T(X))h(X).

Let’s check T is sufficient:

P(X =a|T=1) = P(XP(:TZJ;): J
P(X=2,T=t)= {5();;)2 tT(x) =t 1y P(X = 2)

= Ly(a)=190(T(X))1(X)
= 17(z)=tgo(t)h(X)

Let’s now look at the denominator and we use the law of total probability.

PT=0= Y pl0)

T (z")=t

= > g(T()h(X)

z/:T(x')=t

= > (b))

ai I (el =3

—a(t) Y @)

T (z)=t
The radio (conditional probability) is independent of 6 because gg(t) gets cancelled

out.
1T(5€)=th (.T)

P X =z|T=t)= 5 ”» ,)_th(x’)

does not dependent on #, so T is sufficient.
Now suppose that T is sufficient.

P(z|0) = Py(X = z)

Note that it is equal to

Py(X =) = Py(X = 2, T(X) = T(x))




0.4. EXPONENTIAL FAMILY 7

Now we can factorize this joint distribution into conditional distribution and the
marginal distribution.

Py(X = 2|T(X) = T()) B(T(X) = T(2))

= h(z)gs(T'(z))
This first factor does not depend on 6 by the sufficiency of 7' O
Factorization Theorem on i.i.d. Normal

Let X1,..., X, """ N(0,1). Then

n 1 - 9
PX|0) =] —=e 7

o~ T (Xi-6)?

o3 T (X2~ 62 +0X

n
> o3 T (XD k20T, X,

Therefore, X is sufficient.

Factorization Theorem on i.i.d. Uniform Distribution

Let X; be iid uniform distribution on the interval (,6). Then

p(210) = [[ Glocxico)

=1
n
—Tn
— [/ H 1O<:vi<0
=1

)
=0 1O<mini T;,max; x;<0

__n—n
=1 10<mini T; 1maxi ;<0

Therefore, max; x; is sufficient.

0.4 Exponential Family

Exponential Family

A distribution p (pmf or pdf) is in the exponential family if

p(x]0) = exp (Z n;(0)T;(x) — B (9)> h(z)
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where 7 is called natural parameter, a function of the underlying parameter 6. 7}
is a sufficient statistics. B(f) is a normalizing factor, i.e.

B(6) = log / X W OB () dp(z).

h(z) is called the base measure.

Exponential Family and Exponential Distribution

The exponential distribution exp(#) belongs to the exponential function.

p(2]0) = e 1,50
= exp(—0z + log 0)1,>

Here 6 is the natural parameter. x is the sufficient statistic. log(#) is the log-
partition function. The indicator is the base measure.

Exponential Family and Gaussian Distribution

Consider N (u,0?) where

o p pt 1 )
= exp (—T‘Q—F—x—@—élog@ﬂ'o ))

J

Most common distributions are in the exponential family. The exponential family is
a convenient concept when we consider i.i.d. observations, where the joint likelihood is

d n n
play, ... 2|0) = exp (Z n;(6) (Z Tj(xi)» [ 1)
j=1 i=1 i=1
Note that this is still an exponential family where the sufficient statistic is the sum

The sufficient statistic is still d dimensional, so you can always compress your data into
d dimension.

Canonical Form of Exponential Family

An exponential family distribution p is of the canonical form if

p(x[n) = exp (Z n;Ti(x) — A(n)) h(z)

where the natural parameter 7 = 6 is the identity function. A(n) is the normalizing
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function:
log/ezf=1"jTj(””)h(x)du(x)

0.4.1 Minimal Exponential Family

We should make sure d is minimized and if so, the exponential family is called minimal.

Minimal Exponential Family (Informal)

An exponential family (P, : n € H) (of canonical form) is minimal if its dimension
cannot be reduced.
(This is not a formal definition)

A non-minimal example

Let

p(x|n) = exp(mT'(z) + n2(3T(z) + 2) — A(n))
= exp((m + 3m2)T(x) + 212 — A(n))

In this example, we reduced the dimension of the exponential family from 2 to 1.
This happened because the sufficient statistics are linearly dependent.

Now if the natural parameters are linearly dependent, then we can also reduce
dimension:

p(x[n) = exp(nTi(z) + (4 = 5n)Ta(z) — A(n)) (1)
= exp(n(Ti(z) — 5T(z)) — A(n)) exp(4T2(z)) (2)

0.4.2 Canonical Form

Now we present the formal definition of canonical form.

Formal Definition of Canonical Form

An exponential family (P,,n € H) (of canonical form) is minimal if its sufficient
statistics are linearly independent and natural parameters are linearly independent.

There are two types of minimal exponential families.
1. Full rank: the parameter space H contains an open d-dimensional rectangle.
2. Curved: The natural parameters 7, ...,7,4 are related in non-linear ways.

For example:
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Normal Distribution Example

Let
1.
(@) ==a T (a) =
2. 1 ,
=552 ™= 3

Let’s consider a weird Poisson-like example, N (o2, 02). We get that
n2 =1

and the expression becomes non-minimal and N(c?, %) is a one-dimensional
exponential family.
Now let’s consider ;= v o2. Then

1 1
nl_T‘_za Uz—ﬁ

The natural parameters are related in a non-linear way, so we cannot reduce
the dimension further. N(vo2,0?) a 2-dimensional curved exponential fam-
ily.
Now if there is no constraint on p and o2, then the exponential family is
minimal and full rank.

H=(0,00) xR

To summarize, non-minimal exponential families are over-parameterized.

0.4.3 Minimal Sufficiency

Minimally Sufficient

S is minimally sufficient if and only if for every sufficient T, S is a function of 7.

Example of minimally sufficient statistic

X; iid. N(0,1)

1Ty = (Xy,..., X,)

2.
T2 = (Xl +X27X3+X47"'7Xn—1 +Xn)
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i<n/2 i7n/2

T, =) X

They are all sufficient statistics. We see that T} is a function of T}, 7T, and T3, but
not vice versa. We will later show that T} is minimal statistic.

0.4.4 Finding minimally sufficient statistic

Sub-Family Method

Lemma

Suppose ©g C O, S is minimally sufficient for the small family (F : § € ©,) and
sufficient for the big family (P : 6 € ©), then it is minimally sufficient for the big
family.

e To check minimal sufficiency, you only need to find a convenient sub-family
and check minimal sufficiency for that small family.

Proof. The proof directly uses the definition of minimal sufficiency. Suppose T is
an arbitrary sufficient statistic. Then S = f(T') since S is minimally sufficient on
the small family (P : 6 € ©y). O

Theorem: Minimal sufficiency of likelihood ratios

Assume (P : 0 € 0y,04,...,0;) share common support, then

Pu(X)  Po(X)
TX) = <PZO<X>""’ PZO<X>)

is minimally sufficient.

e Note that the assumption is not true for uniform distribution on (0, §) since
the support does depend on 6, but the assumption is true for Gaussian,
binomial, exponential family etc.

e If d =1, ie. we only have 6y and #,, then the likelihood ratio of the distri-
butions itself is a 1-dimensional minimally sufficient statistic.

Proof. The proof is actually easy.

1. We need to review the factorization theorem. 7' is sufficient if and only if the
distribution of X can be factored into two parts. The first part only depends
on 6 through the statistic 7'(X). The second part is function of X.

2. We can always factorize the likelihoods using the following algorithm:
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(a)
PGO(X) = PGO(X)

(b)
Pﬁj(X>:1}<X)P00(X)7 ]:1’7d

This is immediate from the definition of 7.

3. Now define

Ti(x) j=1,...,k
h(z) = Py, ()

0y can be an arbitrary element in the parameter space so we have a valid h
because it does not depend on knowledge of 6.

46, (T(z)) = {1 o=t

4. Note that if a statistic 7" is sufficient, then

P(elty) _ g0 (T())
P(elfo) ~ g0(T())

h(x) gets cancelled out. The likelihood ratio only depends on z through 7'(z).

5. Now suppose 1" is an arbitrary sufficient statistic, by the above conclusion,
the likelihood ratio is a function of T"(z).

6. Since T is a function of likelihood ratio, T is a function of 7", meaning that
T is a minimally sufficient by definition.

]

Let X; be i.i.d. Bernoulli(d). 6 € [0, 1].

n

2 X

=1

is a sufficient statistic.

We will now show it’s minimally sufficient using the subfamily method.

Consider the subfamily 6y = 0.5,6; = 0.6. The likelihood ratio is going to be our
minimally sufficient statistic:

p(alfy) _ 67" (1 — 6y)" T

p(xlfo)  9="i(1 — fo)r—Xse

0\ =% (1=0\"="  (Gi1-6\=" (1-6\"
0o 1— 6y ~ \bo1— 6 1— 6,

It’s equal to
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Which is equal to A
3

N>z Z\n
5)="(5)

This guy is minimally sufficient for the subfamily {0.5,0.6}. Therefore it’s always
minimally sufficient for the original family [0,1]. However, note that this is a
monotonic function of the sum statistic > z;, so it’s equivalent/bijective to the
sums Y x;. Therefore, Y  x; is also minimally sufficient.

Recall that T = T'(X) is sufficient iff X|T is independent of § € ©. S is minimally
sufficient iff S is sufficient and for every sufficient T, S is a function T, i.e. we can
compute S from T.

1. Sub-family method:
Lemma: Suppose Oy C ©1, S is minimally sufficient on ©( and sufficient on ©4, it
is also minimal sufficient on 6.
Theorem: For (Fy) : 0 € {0y,04,...,60;} with common support.

is minimally sufficient.

A minimal exponential family is defined such that the dimension cannot be reduced.

Minimal Exponential Family

A minimal exponential family exp((n, T'(X)) — A(n))h(X).
neHcR?

is minimal if the natural parameters 7; are not linearly dependent and the sufficient
statistics 7;(X) are not linearly dependent.

e Note that we used (n,T(X)) to represent >, n;T;(X).

0.5 Minimal Exponential Family and Minimal
Sufficient Statistic

Theorem: Minimal exponential family and minimal sufficient statistic

The minimal exponential family exp({n, T'(x)) — A(n))h(x).
ne HcCRY,

then
T(x) = (Th(x),...,Tyz))

is minimally sufficient.

Proof. 1. Since the exponential family is minimal, we can find ng, n1,...,75 € H
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such that
(771 - 770);
(122 = 10) c Rixd
(77d — 770)T

has full rank. (Note that this is a consequence of minimal exponential family.)

Consider two situations

(a) Full rank exponential family:

Full rank exponential family

An exponential family is of full rank if the following equiv-
alent conditions are true:

i. The statistics T; are linearly independent as func-
tions.

ii. The parameter space H is an open set.

In this case, you can find a rectangle inside H and let n; be the
vertices. Then their differences are linearly independent.

(b) Curved exponential family: in this case, the parameters n; are
related in a non-linear way. Because of the curvature of the pa-
rameter space, we can find 7, 11, 72 such that 17, —n; and 17, — g
are linearly independent, i.e. the two by two matrix has full rank.

2. If you have a non-minimal exponential family: This means that H is a
linear subspace of R? because the 7; are related in a linear way. Their
differences are always parallel.

3. Now consider the subfamily {no,n,...,1m4} € H and the minimal sufficient

P(Xln) ; _
Py = Lo d

P(Xn;) _ exp((ny, T'(x)) — Any))
P(X|no)  exp((mo, T (x)) — A(no))
= exp({n; — m0, T(x)) — A(n;) + A(m0))

This is equivalent to (n; — o, T(x), j=1,...,d. We can turn them into a
column vector:

statistic

(m — no, T(x))™ (m — o)

(a =10, T@)T| | (1 = mo)
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which, since the matrix is of full rank, is equivalent to

T1 (.T)
Txy=| : |,
Ty(x)
which is minimally sufficient on the subspace {ny,...,ns} and therefore on

H.
O

With the above theorem, we can derive minimally sufficient statistic for Bernoulli,
Poisson, Gaussian, etc.

0.6 Completeness

The idea of the completeness method is to remove all ancillary information.

Suppose we have X, Xo ~ N(6,1).
T — (X17X2)

is sufficient but not minimal. 7T is a triwial sufficient statistic. We can use the
previous theorem to show that a minimally sufficient statistic is the sum of the
data, but 7" is not a function of the sum.

Now note that T is equivalent to (X; — X5, X; 4+ X3). The distribution of X; — X} is
N(0,2), which does not dependent on 6, so it’s useless when estimating 6. Therefore
it’s said to be ancillary.

Ancillary Statistic

A = A(X) is ancillary iff its distribution does not dependent on 6 € ©.
It is said to be first-order ancillary iff its expectation EqA(X) does not dependent
on ¢ € ©. (This is a weaker version).

Complete Statistic

T = T(X) is complete iff
Eof(T(X)) =0

implies that for any function f
f(T(X)=0 as VOeO,

ie. P(f(T(X))=0) =1, ie. the zero function is the only possible f.

e This means that there is no non-constant function of 7 is first-order ancillary.
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Theorem: Bahadur

If T is sufficient and complete, then 7' is minimally sufficient.

Proof. Assume a minimal sufficient statistic U = U(X) exists. Then by definition
of minimal sufficiency, U is a function of T, U = h(T). It suffices to show that T
is also a function of U.

Let’s now construct such function h.

1. Define
g(u) = Eo(T|U = u),

which is a function independent of # since it is a function of a sufficient
statistic U.

2. Then,

Eog(h(T)) = Eog(U) = Eo(Eo(T'|U)) = Eo(T)
— Ey(g(h(T))-T)=0 Y9eO

3. By completeness of T,
gh(T)=T as. = glU)=T a.s.
O

Bernoulli Example

Xi,.., X, % Bern(0)

T = ZXi ~ Binomial(n, 0)

i=1
Suppose Eqf(T(X)) = 0, then

> s@(})ea-or-

i=1

=2 _f@) () (1) =0 =0 We@

Set
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This is a polynomial of degree n. It has at most n roots. But the above equa-
tion says the equation has an infinitely amount of solutions. This means that the
coefficients of the polynomial must ALL be zero! This shows that 7" is complete.

Consider X;,..., X, = Unif(0,0). This is NOT an exponential family since each

distribution has different support. Let

T = max X;
Let’s find the distribution:
n t n
P(T <t) = <t)=|( =
(T <t)=J[PX;<t) <0) . te(0,0)
I=1
d
p(t|0) = aP(T <t)=-0"-n-t""' te€(0,0)
Suppose
Eof(T(x)) =0,V0 >0
Then

6
/ f@&o " n-t"tdt =0
0

0
== / t" 1 f(t)dt =0, VO >0 (want to show)
0

To show that T' is complete, we want to show that the function f is the zero
function. We need a trick from real analysis. The trick is
Positive Part and Negative Part!

f+ :max(f,O), f_ :maX(_fu())
Then f can always be decomposed into difference of positive and negative parts:
f=f—f
Then we have that
0 0
/ "Lt ()dt = / "L (t)dt VO > 0.
0

0
02

02
=> " ()t :/ ")t Y0 < 6 < 6,
91 91

= / "L () dt = / "L f=(t)dt VBorell set A
A A
= " 1fT(t) =t""'f(t) can also derive from line 2 if have not taken measure theory
= f(t)=0 a.s.
—> T is complete.

Intuitively, the above measure theoretic argument is true because both #*~! and
fHt"=1f~ are positive, so the integrals cannot be equal by coincidental
cancellations.
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Normal Distribution Example

Let X1,... X < N(0,1).

T:%;Xin(G,l)

Suppose that
Eof(T(z)) =0 V6 €R.

which implies that

1 1 2
304y = 0
T e T
/f( )\/27r

— /f(x)e_%“2+medx =0 VeR

— /f+(:c)e_%x2+x0dx = /f_(x)e_%””er”de Vo € R
Take 0 = 0, we get that

/f+(:v)e_%”’2dx:/f_(a:)e_%x2da:
which implies that

[ fH(z)e 2% efods _ [ f~(z)e 2% efods
[ fH(@)e 2 de a [ f(z)e 2" da

Note very importantly that these are moment generating functions! Same
MGF implies same density, so

ft=f ae = f=0 ae.

Full Rank Exponential Family

X Ti@- AW () e H

Then
T = (Ti(x),...,Ty(x))

is complete.

e The proof is similar to that of the normal distribution. You apply the moment
generating function argument.

Completeness means that we have moved all the first order ancillary information.
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Basu’s Theorem

Suppose T' is complete and sufficient and A is ancillary, then 7" and A are indepen-
dent.

Proof. We want to show that
PQ(A S B|T: t) = PQ(A S B) Vit

Let
C = PQ(A € B),

which does not dependent on 6 because A is ancillary.
Let
g(t) = Pp(A € B|T =1t),

which does not dependent on @ either, since T is sufficient.

Now
Ey(g9(T) — c) = Eg[Py(A € B) — Py(A € B)]
=P(AeB)—FP(AeB)=0 Y9c0O
Then by completeness, g(t) = ¢ a.s.. O

Let X1,..., X, "“" N(6,1). Then

Proof. The proof of this depends on linear algebra (from undergraduate mathe-
matical statistics which I never took, anyways. I just read the proof and I think I
understood it lol). However, we know that X is sufficient and complete. The sum
of difference of squares follows a x2_, distribution which does not dependent on 6.
Therefore, Basu’s theorem tells us that they are independent. ]

0.7 Decision Theory

Today we are going to start a new topic: decision theory!

e Abraham Wald from Columbia established this theory. As we know, he unfortu-
nately died in a plane crash.

Suppose we have the family (P : 6 € ©) and we have data Xi,..., X, & Py. Suppose we

want to estimate  with 0 = é(Xl, ..., X,). Suppose we also have a loss function L(é, 9),
e.g. |0 —0|>
e Note that L(é,@) is a randomly variable. We can get rid of the randomness by
taking expectation:

EoL(6,6) = / L(6(z), 0)py(x)dz
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This is called the risk function and we denote it with R(6,6).

0.7.1 Rao-Blackwell Theorem

Theorem: Rao-Blackwell

Assume L(6, 0) is convex in 0, for any 6 and any sufficient statistic T, defined

Then 3 X
R(0,0) < R(0,0)

e Unless your estimator is already a function of the sufficient statistic 7', this
will be a strict inequality.

Proof. 1.
< By[L(0,0)|T]
by Jensen’s inequality and the convexity of the loss function L.

2. Finally, the proof is done by taking expectation of both sides.

e Taking conditional expectation is called Rao-Blackwellization.

e Note that T is required to be sufficient since otherwise, we are not able to
compute the conditional expectation as it depends on 6.

0.8 Bayes Estimator and Minimax Estimator

Comparing Two Estimators

Suppose we have two estimators 6 and 0. Let

e However, we do not know the true location of . So how can we compare two
estimators?

e One idea is to compute the average risk:

/ R(6,60)7(6)ds.

Note that we need an piror distribution on 6.
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e Another idea is to compute the maximum risk:

~

sup R(6,0)
Ee)

Bayes’ Estimator and Minimax Estimator

g is called a Bayes’ estimator if
f = argming / R(6,0)m(6)dd
which is equivalent to
Vo / R(6,0)7(0)dd < / R(0,0)m(6)d6.

0 is called a minimax estimator if

f = argming sup R(6, 0).
0€6

which is equivalent to

V0 sup R(0,0) < sup R(0,0)
6O 6O

Let’s take a look at the Baye’s estimator

/ R(0,0)7(0)d6 — / / L(6(x), 0) Py ()7 (0)dzdd.

Note that Py(x)m(0) = P(z|0)m(0) is the joint distribution of (z, ). It’s also equal to
7(0|x)m(x) where 7(6|z) is the posterior distribution of 6 and m(zx) is the marginal of .
Then the average risk can be represented as:

/ R(6,0)7(0)d0 = / / L(0(x), 0)x(0|x)d0m(z)dz

Note that we exchanged the order of integration with a non-rigorous application of the
Fubini’s theorem. (Most functions in this course are nice functions so we usually just
apply Fubini’s theorem without any check.)

e Now note that
| (o). 0)m(e1)a0)
is a function of z.

e We can find a number 6, (z) that minimizes this function:

~

0. () = argmina/L(a,H)ﬂ(Hlm)dH.

e Claim: this estimator is Bayes.
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e Note that in
argminé/R(é, 0)m(0)dé,

it’s a minimization over all functions. But now we are dealing a minimization over
all numbers.

Proof. We want to show that for any 0

/ R0, 0)r(6)d6 < / R(0, theta)r(6)d6

/ R(B.. theta)r(6)d0 = / / 7 (0]2)d0m(z)dz
// 7(0)z)dOm(z)dx

/ R(6,0)7(6)do

by the definition of 0. O

An important example

Consider © C R.

0.(x) = argmin, /(a — 0)*m(0)|z)do

= argmin,E((a — )?|z)
The solution of this minization problem is apparently
E[f]|z]
e (some useful remark: think of expectation as projection.)
e Very important fact to remember: Suppose we have a random variable Y € R.
E[Y — p)? = Var(Y) + (EY — pu)?

The mean square error is the sum of variance and bias squared. We just used
the conditional version of this fact.

J

Bernoulli Example

Suppose X1,..., X, are i.i.d. Bernoulli(p), and consider

L(p,p) = (b —p)*
Consider the beta prior
m = Beta(a, 8), 7(p) oc p* (1 —p)°~
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Then
pIX1,.. Xy ~ Beta(d +a, Y +P)
X; 1-X;

Then the Bayes estimator is

R Y X+«
=E(p|X:,...,X,) ==———
P (Pl X1, - Xn) n+a+

Let’s now compute the risk.

R(p,p) = E(p — p)°
= Var(p) + (E,(p — p))°
_ n 2p(1 —p) a+f
_(n+a+ﬁ) n +(a+6+n

o 2
oz-l—ﬁ_p)

)*(

Now let’s find the minimax estimator:

émimmm = argmin, sup R(é, 0)
0c6

e Note that this is analogous to the equilibrium of a game in game theory.

e Prof. Chao remarked that the minimax estimator is harder to find than the
average estimator.

Theorem: Bayes and Minimax Estimator

Suppose for some prior distribution T, 0 satisfies that

sup R(6,0) = inf / R(G,0)n(0)d0

0cO 0

then 6 is minimax.

e To find the minimax estimator, we are actually looking for a Bayes’ estimator
such that the average risk is minimized for some prior distribution on 6.

Proof. First of all,

V0, sup R(6,60) > / R(0,0)m(6)dd
0cO

This is apparently true because this is just saying that "largest is greater

than average.” This inequality is always used.

sup R(0,6) > / R(0,60)m(0)do
0O

> i%f / R(0,0)m(6)dd

= sup R(é, 0)

0c®
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The theorem might be hard to use but it has a nice corollary and it is an important tool
for finding minimax estimator.

Corollary

If = 0, for some 7 and R(0,,0) is constant over § € O, then 0 is minimax.
Proof. Let’s check the condition of the above theorem.

1. First, the worst risk is equal to the average risk because the risk is constant

sup R(0,6) = / R(0,0)r(0)d0

= inf / R(0,0)7(6)dd

0

2. The second equality is because 0 is a Bayes estimator.

Now the condition of theorem is satisfied and @ is minimax.

0

Bernoulli Minimax Example

Let X1,..., X, be iid Bernoulli(p), and lost function L(p,p) = (p — p)*.

e The Bayes estimator as we have found is

X;
p= B, Xy = 2D
R(p,p) = Eg(p — p)?
_ n 2P(1—p) at+pf 5 « RY:
— (PR (S Sy
e This is a quadratic function of p:

n 50(1 —p) a+pB o, « 5
(n—l—a+ﬁ) n +(n+a+ﬁ) (a—l—ﬁ_p)
a+pB \ 1 n 2 5
<n+a+ﬁ) _ﬁ(n-l—oz-i-ﬁ) b
N l( n )2_< a+ 3 )2 20
n\n+a+p n+a+p) a+p P

+(ciats) (+55)
n+a+p a+p

e To make the Bayes estimator constant, we need both the quadratic and linear
terms to be zero.
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(a+p)?=n

2a(a+B)=n
Let’s solve these equations. We can take the square of the second equation
to get that

n = 4a?, a:@, b:ﬂ
2 2
Therefore,
pmznzmam n_{_\/ﬁ

Note that the MLE is pyre = X.

— Let’s compare the minimax and the MLE estimators:

A~ ~ . 1 _
R(pyre,p) = EBp(Prrr, p) = Ep(p — p)?* = p( . p)

1
R Aminimaax ) = o7 = 1\
(P p) T ESAE

Note that max, R(Pyre,p) = ﬁ. Therefore, Pinimaz 18 doing a little
better than the MLE in terms of maximum risk.

Bernoulli Example with a Different Loss Function

Let’s normalize the loss function with the Fisher information. Let Xy,..., X, be
iid Bernoulli(p) with loss function

. (» —p)”
L(p,p) =
L p(1—p)
Let the prior be the uniform prior: 7(p) = 1.
. [ (a—p)®
p(x) = argmin, | ———=m(p|x)dp
(@) = arguin, [ £Ln(pla)
1. Note that
. (a —p)? : / o 7(plT)
argmin, / m(p|x)dp = argmin, [ (a —p dp
pﬂ—p)(|) ( )ﬂl—m
m x n L X )— -
PA) o i Xemh (1 — T2 = Bera(3 0, 321 - X))
p(1—p) i=1 i
2. Therefore,
. > X A
p— pu— X pu—

3. Now let’s look at the risk:

S
|
=

(3]
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which is a constant. Therefore, p = X is minimax.

4. Note that the result is very different from the last example, but we only
normalized the loss function this time.

Normal Distribution Example

Let X1,..., X, iid N(u,0?), p € R2 The loss function is

(i = p)?

Note that there’s no question that the square error is the most natural choice of
loss function for normal distribution, since the Fisher information is a constant.

e Question: Is X minimax?

Note that this is not Bayes estimator since it’s unbiased and ordinary squared-
error loss, Bayes estimator must be biased.

e Our current tool box is not enough to prove this minimax. We need new
tools to show that this is minimax.

0.9

In last session, we talked about decision theory where we have data X ~ F and parameter
space (Py : 6 € ©). We have a loss function to quantify the error of an estimator: L(6,0)
and the risk function:

R(0,6) = ByL(6,0) = / L(B(x), 0)dPy(z)

Normal Distribution Example

Consider X1,..., X, % N(u,0?), p € R with loss function (i — ).

e Question: Is X minimax?

2

o Well R(X, ) = Eg(X — p)? = <.

e Let’s first ask: Is X Bayes? Consider 7 = N (0, (2).

- _ut 1 n (-2
m(p| X) oc m(p) Hp(XlLu) X e 52z im1 3

i=1

Define ) (x 2
M i M

f(p) = at Z Qo
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/ —
Flw=—5+- E 2(p— X;) =0
H H Z
e This implies that our Bayes estimator is
1 Y X n
o2 i o2 =
E[ulX] = 1 n 1 n
2tz ate

Observe that no matter what ¢ we choose, E[u| X] is not equal to X; therefore,
X is never a Bayes estimator.

Let’s look at the the risk:

[ ]
5
=
=
o
+
=
@
s
=
@
]
&
aQ
@
=.
0
=~
g
@
=
@
0fe]
—
&
=+
@
+
=
@
.
0
25

2\ o2 < ? 1
Rﬂ,uwudu:< "n>—+< Ln>L2: y
/ (B p)mist) F+2%) n \5+2 1+ 2%

o2

w°

To prove X is minimax, Note that that SUD,,cr R(X,p) =

Vi, sup R(ji, ) > / Rt p)m (1) dp

peR

e Letting 2 — oo on both sides, we get that

lim sup R(f, p) = sup R(f, p) > lim m
t2—00 yeR uER 12—o0 = + i

Therefore

0.2

sup R( ) > Z
HER n

= R(p)

The idea of the above example leads to the following theorem:
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Theorem

If there exist prior distributions {7,,} such that

sup R(0,0) = lim inf / R(6,0)7,,(0)d0

0O m—o0 §

then 6 is minimax.
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