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Introduction

The journal of studying probability theory begins with some cliche. Sometimes, it’s okay
to do something boring.

1.1 Elementary Probability

A probability measure is a function P from subsets of a set Ω (sample space) to [0, 1]
with properties

1. P(Ω) = 1

2. P(A ∪B) = P(A) + P(B) whenever A and B are disjoint, i.e. A ∩B = ∅.

An example

Modelling roll of a fair die Ω = {1, 2, . . . , 6}.
Let P({1}) = · · · = P({6}) = 1

6
. We can get the probability of other subsets by

addition.

Here is an example that is not-so-elementary.

Tossing coin

Toss a fair coin, we are interested in the number of tosses until we get the first
head.
A natural way of modelling this is by letting Ω = {1, 2, 3, . . . }

• P({1}) = 1
2

• P({2}) = 1
4

• P(n) = 1
2

n

P(takes odd # tosses to see frist head) =
1

2
+

1

8
+

1

32
+ . . .

What justifies this calculation? We need countable additivity, i.e. If A1, A2, . . .
are such that Ai ∩ Aj = ∅ for i ̸= j, then

P(
∞⋃
i=1

Ai) =
∞∑
i=1

P(Ai).

1



2 CHAPTER 1. INTRODUCTION

1.2 Problem with Uncountable Additivity

So far, we have been able to calculate arbitrary subset of Ω. However, it was a big shock
to mathematicians when they discovered that there was problem with that when Ω is
uncountable.

Vitali Set

We can’t always build natural probability measures that assign a probability to
every subset of an uncountable.

• Ω = circle of radius 1. (Circumference 2π)

• Say ω′, ω′′ belong to the same family if it is possible to go from one to the
other taking steps of unit length (unit length is defined by one radian away).
This is an equivalence relation.

• The circle is partitioned into disjoint families.

• Each family is a countable dense subset of Ω.

Now let’s consider a probability measure on the circle.

1. Suppose we can define a probability measure P on all subsets of Ω such that
the probability of an interval is proportional to its length. (The idea of
uniform probability measure on the circle.)

2. For each family, pick a point in the family to be the head of the family.

3. Set A = {ω ∈ Ω : ω is the head of the family.}

4. What is P(A)? Well, it turns out that the supposition that we can define
such a probability measure must be false.

5. To see that, let

Bi = {ω ∈ Ω : ω is i units counter-clockwise from the head of its family}

and let

Ci = {ω ∈ Ω : ω is i units clockwise from the head of its family}

remark. We need to make uncountable choices to pick the heads. This is a
set theory problem. We actually need to appeal to the axiom of choice.

6. Next, note that P is rotation invariant so P(A) = P(Bi =) = P(Ci) for all i.
Note that A,B1, B2, . . . , C1, C2, . . . pairwise disjoint, because 2π is irrational.
For Bi and Cj to overlap, then somehow we need i+ j = 0 mod 2π which is
impossible.

7. Then
1 = P(Ω) = P(A ∪B1 ∪B2 ∪ · · · ∪ C1 ∪ C2 ∪ . . . ),

which is impossible.

remark. There’s actually a deep theorem saying that there exists no probability
measure on the circle that assigns zero probability to each point.
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To remedy this, we realize that we can only assign a probability to some subsets of
the sample space.

Sometimes, people describe this phenomenon as: we don’t always have complete in-
formation about the world. By this, they mean there may be some events to which we
cannot assign probabilities.



Sigma-Fields and Measures

2.1 Sigma-Fields

With the example of Vitali circle in mind, we have to restrict the definition of probability
measures to a subset of the power set of the sample space. This brings us to the definition
of sigma-field, a space with properties needed for our theory to work.

σ-field

Define a σ-algebera or σ-field in Ω as a nonempty collection F of subsets of Ω such
that if E1, E2, · · · ∈ F , then so are EC and

⋃
k Ek (and so is

⋂
k Ek by de Morgan)

• Additionally, Ω ∈ F

• A sigma-field is also called a field, or sigma-algebra.

Examples of Sigma-Fields

The following spaces are sigma-fields and it’s easy to very this claim.

• The power set:
F = 2Ω

• The trivial sigma-field:
F = {∅,Ω}

•
Ω = {1, 2, 3} F = {∅, {1}, {2, 3},Ω}

•
F = {B ⊂ Ω : B is countable or BC is countable.}

Following lemma shows a nice property of sigma-field.

Lemma: Intersection of sigma-fields is a sigma-field

If I is any index set and {Fi : i ∈ I} are σ-fields over Ω, then
⋂

i∈I Fi is a σ-field.

Proof. 1. Ω: Each Fi has Ω.

4
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2. Closed under complement: If E ∈
⋃

iFi, then E ∈ Fi for all i. Then EC ∈ Fi

for all i.

3. Closed under countable union: Similar argument.

Now, we naturally have the following proposition. Isn’t it reminiscent of topology?
(In case you are not sure, it is.)

Proposition:Uniquely generated minimal sigma-field

Let F ⊂ 2Ω be any collection of subsets of Ω. There is a unique smallest σ-field
σ(F) that contains F .

• It is called the σ-field generated by F .

Proof.

σ(F) =
⋂

{A : A is a σ-field over Ω such that F ⊂ A}.

Here’s another proposition that will be useful.

Lemma: condition for generators to be the same

Let F1,F2 ⊂ 2Ω. Then
σ(F1) = σ(F2)

if and only if
F1 ⊂ σ(F2) & F2 ⊂ σ(F1)

Proof. Well

• Suppose σ(F1) = σ(F2), then

Fi ⊂ σ(Fi) = σ(Fj)

for (i, j) = {(1, 2), (2, 1)}

• Suppose F1 ⊂ σ(F2) & F2 ⊂ σ(F1). Since F1 ⊂ σ(F2), σ(F2) is then a
sigma-field containing F2. Then σ(F1) ⊂ σ(F2) by the minimality of σ(F1).
We have the other direction by swapping 1 and 2.

We now involve some topology in our discussion of measure theory.

Borel Sigma Field

Let X be a topological space (e.g. Euclidean space Rd). The Borel σ-field B(X) is
the σ-field generated by the open subsets in X.

B(X) = σ({open subsets of X}).



6 CHAPTER 2. SIGMA-FIELDS AND MEASURES

Events in B(X) are called Borel sets.

• Here is a useful fact. For X = Rd, every open set U is countable union of
open balls

U =
∞⋃
i=1

B(xi, ri)

Therefore,
B(Rd) = σ{open balls in Rd}.

2.2 Measures

Additivity is an essential assumption on probability measures. This is analogous to the
linearity of linear functions.

Countable Additivity

A function µ : F → [0,∞] is called a measure if it is countably additive. i.e., if If
E1, E2, E3, · · · ∈ F are all disjoint, then

µ(
∞⊔
n=1

En) =
∞∑
n=1

µ(En).

The triplet (Ω,F , µ) is then called a measure space. If µ(Ω) < ∞, we say µ is a
finite measure. If µ(Ω) = 1, we say µ is a probability measure and (Ω,F , µ) is a
probability space. The number 1 is a special number, needless to say lol.

Example of measures

• The constant measures µ ≡ 0 or µ ≡ ∞ (on any (Ω,F)).

• Point mass: on (Ω, 2Ω), fix a point ω0 ∈ Ω, and define by

δω0 : 2
Ω → {0, 1}

by

δω0(E) =

{
1 if ω0 ∈ E.

0 if ω0 ̸ E.

• To verify its additivity, note that if {En}∞n=1 are disjoint, then ω0 is in at most
1 of the En. The next step is to consider the two cases: the case where there
is some En that contains ω0 and the case where there is no En that contains
ω0.
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Positive Scalar Multiple of a Measure is still a Measure. Countable Sum of Measures
is still a Measure.

If µ is a measure, so is αµ for any α ≥ 0.

(αµ)(E) = α · µ(E).

If {µj}∞j=1 is a countable set of measures and µj ≥ 0 and is allowed to take infinite
value (for convergence considerations), then

µ =
∞∑
j=1

µj

is a measure.

Proof. If {Ei}∞i=1 are disjoint events in F , then

µ(
∞⊔
i=1

Ei) =
∞∑
j=1

µj(
∞⊔
i=1

Ei)

=
∞∑
j=1

(
∞∑
i=1

µj(Ei)

)

=
∞∑
i=1

∞∑
j=1

µj(Ei).

=
∞∑
i=1

µ(Ei)

The last equality is by Tonelli’s theorem since we have positivity of the µj’s.

Construction of Discrete Probabilities

µ =
∞∑
j=1

pjδωj

for some ωj ∈ Ω, pj ≥ 0. This is a weighted sum of indicators.
If
∑∞

j=1 pj = 1, then this is a probability measure

µ(Ω) =
∑
j

pj = 1.

If {ωj}∞j=1 is all of Ω, this is called discrete probability:

µ(E ∈ F) =
∑

j:ωj∈E

pj =
∑
ω∈E

µ({ω})



8 CHAPTER 2. SIGMA-FIELDS AND MEASURES

The Very Basic Properties of Measures

1. Monotonicity: If A,B ∈ F and A ⊆ B, µ(A) ≤ µ(B).

Proof.
B = (B − A) ⊔ A

2. Some algebra: If A,B ∈ F ,

µ(A ∪B) + µ(A ∩B) = µ(A) + µ(B)

µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B)

3. Subadditivity: If {Bn}∞n=1 are in F , then µ(
⋃∞

n=1) ≤
∑∞

n=1 µ(Bn)

Proof. Consider A1 = B1, A2 = B2 − B1, ..., An = Bn − (B1 ∪ · · · ∪ Bn−1).
They form the same union.

2.3 Finitely Additive Measures

Measures are often hard to construct, so we can start with a weaker notion of measure
that we can build up to get a measure.

Premeasurable Space

A pair (Ω,A) is a premeasruable space if A is a field over Ω. A countably additive
function

µ : A → [0,∞]

is called a premeasure.
If we assume that χ is only finitely-additive, i.e.

χ(A ⊔B) = χ(A) + χ(B),

We call χ a finitely-additive measure.

• The difference between a field and a σ-field is that a field is only assumed to
be closed under finite union.

• The difference between a premeasure and a measure it’s just the structure of
their domains.

Our first objective is to construct a finitely additive measure on a field.
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Superadditivity of Finitely additive Measure

Let (Ω,A, χ) be a finitely-additive measure space. If {Ai}∞i=1 are disjoint in A and
it so happens that

A =
∞⊔
i=1

Ai ∈ A,

then

χ(A) ≥
∞∑
i=1

χ(Ai)

Proof. Here is a very important technique: when dealing something infinite, start
with something finite. Let n ∈ N be arbitrary,

n⊔
i=1

Ai ∈ A

because A is a field. It is also a subset of A so but monotonicity,

χ(
n⊔

i=1

Ai) ≤ χ(A)

Now, we complete the proof by taking the limit as n → ∞.

We will see an example of how this inequality can be strict.

2.3.1 A Borel Field

One possible natural generating set for the Borel σ-field B(R) is

b(] = {(a, b] : −∞ ≤ a ≤ b ≤ ∞}

What about the field gerated by these intervals? It is

A ⊃ {finite disjoint unions of intervals in b(]}

It’s clear (especially if we visualize this) that the above subset satisfies the field axioms
(closed under finite union and complement),
so A is actually equal to finite disjoint unions of intervals in b(].

2.3.2 Semi-Algebras of Sets

We now introduce an even weaker structure on Ω.

Semi-Algebra

A collection S ⊂ 2Ω if called a semi-algebra or elementary class if

•
∅ ∈ S

• If A,B ∈ S, then A ∩B ∈ S.



10 CHAPTER 2. SIGMA-FIELDS AND MEASURES

• If A ∈ S, then AC is a finite disjoint union of elements from S.

The canonical example of semi-algebra is

S = {(a, b] : −∞ ≤ a ≤ b ≤ ∞}.

Field Generated by Semi-Algebra

If S is a semi-algebra over Ω, then the field generated by S, A(S), is equal to

DU(S) := {All finite disjoint unions of sets from S}

Proof. • First of all,
S ⊂ DU(S) ⊂ A(S)

because a field is automatically closed under finite union. It suffices to show
that DU(S) is a field itself.

• To check closure under finite intersection,

D =
n⊔

i=1

Ai, E =
m⊔
j=1

Bi ∈ DU(S)

D ∩ E = (
n⊔

i=1

Ai) ∩ (
m⊔
j=1

Bi) =
⊔
i,j

(Ai ∩Bj) ∈ DU(S)

Each of Ai ∩ Bj ∈ S since definition of semi-algebra, and different pairs are
disjoint.

• Closure under complement:

DC =
⋂
i

AC
i

Each of the AC
i is a finite disjoint union

⊔
ji
Cjiof elements in S.⋂

i

AC
i =

⋂
i

(
⊔
ji

Cji) =
⊔

ji,1≤i≤m

(
⋂
i,ji

Cji) ∈ DU(S)

Let S be a semi-algebra over Ω. Let

χ : S → [0,∞]

be finitely additive. Then there is a unique extension of χ to a finitely-additive
measure on A(S), defined by

A =
n⊔

i=1

Ei =⇒ χ(A) :=
n∑

i=1

χ(Ei)
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Proof. This identity must hold if χ is a finitely additive measure. Therefore, it
uniquely defines the extension. We have to show that this is well-defined, i.e. χ(A)
cannot possibly be multi-valued.

• Suppose there are two ways to partition the set A,

A =
n⊔

i=1

Ei =
m⊔
j=1

Fj

• Note that
Ei =

⊔
j

Ej ∩ Fj

χ(Ei) =
∑
j

χ(Ei ∩ Fj), χ(A) =
n∑

i=1

m∑
j=1

χ(Ei ∩ Fj)

2.3.3 Stieljes Premeasures on the Borel Field

Let

F : R → R

be any non-decreasing function. On the semi-algebra

b(] = {(a, b] : −∞ ≤ a ≤ b ≤ ∞},

define

χF ((a, b]) = F (b)− F (a) ≥ 0.

We claim that χF is additive on the semi-algebra d(]:

Proof.

(a, b] = (a, c] ⊔ (c, d], a < c < b

χF (a, b] = F (b)− F (a)

= (F (c)− F (a)) + (F (b)− F (a))

= χF ((a, c]) + χF ((c, b])

By the previous proposition, we know that χF extends to a finitely-additive measure
on

A(b(]) = B(](R).

Now let’s answer the question: Is it a premeasure? That is, is it countably additive?
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Necessity of Right Continuity

Fix a ∈ R,

(a, a+ 1]−
∞⊔
n=1

(a+
1

n+ 1
, a+

1

n
] ∈ B(](R)

Now

χF ((a, a+ 1]) = F (a+ 1)− F (a)
∞∑
n=1

χF ((a+
1

n+ 1
, a+

1

n
]) =

∞∑
n=1

F (a+
1

n+ 1
)− F (a+

1

n
)

= lim
m→∞

F (a+ 1)− F (a+
1

m
)

= F (a+ 1)− F (a+)

where
F (a+) := lim

ϵ↓a
F (a+ ϵ)

Therefore, χF is not countably additive if F (a+) ̸= F (a). This shows that for a
finitely-additive measure, it’s possible to have χ(A) >

∑∞
i=1 χ(Ai) as we remarked

previously.

χF is a premeasure iff F is right-continuous

Theorem 2.1. The finitely-additive measure χF is a premeasure (i.e. countably
additive) on B(R) iff F is right-continuous on R, i.e.

lim
δ→0

F (a+ δ) = F (a)

Finitely additive on a field and countably subadditive on semi-algebra means count-
ably additive on field.

Let S ⊆ 2Ω be a semi-algebra. A finitely-additive measure

χ : A(S) → [0,∞]

is a premeasure iff it is countably subadditive on S:

E =
∞⊔
j=1

Ej ∈ S =⇒ χ(E) ≤
∞∑
j=1

χ(Ej)

Proof. • Premeasures are countably additive.

• Finitely-additive measures are always superadditive, so it suffices to prove
that χ is countably subadditive on A = A(S).

• Let

A =
∞⊔
n=1

An
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where A and An are sets in the field A. Now we decompose them into sets
from S. Let

A =
n⊔

j=1

Ej, An =
Nn⊔
i=1

En
i

Now let’s apply some set algebra,

Ej =
⊔
n

(An ∩ Ej) =
⊔
n

Nn⊔
i=1

En
i ∩ Ej

By our assumption of χ being subadditive on the semi-algbera S,

χ(Ej) ≤
∑
n

∑
i

χ(En
i ∩ Ej)

Now

χ(A) =
N∑
j=1

X(Ej)

≤
N∑
j=1

∞∑
n=1

Nn∑
i=1

χ(En
i ∩ Ej)

≤
∞∑
n=1

Nn∑
i=1

N∑
j=1

χ(En
i ∩ Ej)

=
∞∑
n=1

χ(An)

We now that the Stieljes construction with a right-continuous F

χF : A(d(]) = B(](R) → [0,∞)

is indeed a premeasure by showing that it is countably subadditive on the semi-algbera
b(] = {(a, b]}. Let’s assume that a, b < ∞ for convenience. Let

(a, b] =
∞⊔
j=1

(aj, bj].

Compactness is a useful concept for us to reduce a countable situation to a finite situation.
Let’s let consider a closed interval

[a+ δ, b] ⊂ (a, b] =
⊔
[

j = 1]∞(aj, bj].

Compactness is about open covers, so let’s modify the upper bound of (aj, bj] a little bit:

[a+ δ, b] ⊂ (a, b] =
∞⊔
j=1

(aj, bj] ⊂
∞⊔
j=1

(aj, bj + δj)
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By compactness,

[a+ δ, b] ⊂
N⊔
j=1

(aj, bj + δj) for some N < ∞.

χF is a finitely additive measure over the field of unions.

χF (a+ δ, b] ≤
N∑
j=1

χF (aj, bj + δj] ≤
∞∑
j=1

χF (aj, bj + δj]

=
∞∑
j=1

χF (aj, bj] + χF (bj, δj]

χF (a+ δ, b] ≤
∞∑
j=1

χF (aj, bj] +
∞∑
j=1

χF (bj, δj]

∑∞
j=1 χF (bj, δj] can be arranged to be arbitrarily small. For example, for any ϵ > 0, choose

δj > 0 such that F (bj+]deltaj) − F (bj) <
ϵ
2j
. We can do this by the right continuity of

F .
On the other hand,

χF (a+ δ, b] = F (b)− F (a+ δ) → F (b)− F (a)

as δ → 0 and the right hand side does not change when we take the limit. Therefore, we
have shown that

χF is a premeasure on the Borel field B(](R).

If we choose
F (x) = x, χ(a, b] = b− a,

then we call it Lebesgue premeasure. Notably, the Lebesgue premeasure is translation-
invariant.
Our next goal is to extend our premeasure on the field to a full measure on a sigma-field.
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